Logo

Jurnal Pendidikan dan Kebudayaan

Badan Standar, Kurikulum, dan Asesmen Pendidikan
Kementerian Pendidikan Dasar dan Menengah

Pengaruh Penggunaan Bahan Ajar Kalkulus Diferensial Berbasis Pendekatan Open Ended terhadap Kemampuan Representasi Matematis Mahasiswa

Eka Kasah Gordah
Syarifah Fadillah
Submitted
Apr 20, 2015
Published
Sep 30, 2014
PDF (BAHASA INDONESIA)
Citation
Gordah, E. K., & Fadillah, S. (2014). Pengaruh Penggunaan Bahan Ajar Kalkulus Diferensial Berbasis Pendekatan Open Ended terhadap Kemampuan Representasi Matematis Mahasiswa. Jurnal Pendidikan Dan Kebudayaan, 20(3), 340–352. https://doi.org/10.24832/jpnk.v20i3.148
Abstract

The aim of this research was to investigate the improvement of student’s ability on mathematical representation by using teaching materials based on open ended approach in differential calculus subject. This research was conducted at STKIP PGRI Pontianak in the even semester of 2012/2013 academic year. This research used cluster random sampling by choosing one of the four classes at the mathematics education department in the academic year of 2012/2013. The experimental method with the one group pretest-posttest design was applied in this research. The result of this research showed that: 1) there was an improvement on student’s ability on mathematical representation by using differential calculus teaching material based on open ended approach with moderate of quality of improvement level, 2) there was a difference on student’s ability on mathematical representation when it was viewed from the level of student’s prior knowledge, and 3) there was no difference on student’s ability on mathematical representation when it was viewed from their gender.


ABSTRAK

 

Tujuan penelitian ini adalah untuk membandingkan peningkatan kemampuan representasi matematis mahasiswa melalui penggunaan bahan ajar berbasis pendekatan open ended pada mata kuliah kalkulus diferensial. Penelitian dilaksanakan di STKIP PGRI Pontianak pada semester genap tahun akademik 2012/2013. Pengambilan sampel penelitian menggunakan teknik cluster sampling dengan memilih satu kelas dari empat kelas yang ada pada program studi pendidikan matematika angkatan 2012/2013. Penelitian ini menggunakan metode eksperimen dengan desain penelitian the one group pretest-posttest design. Hasil penelitian menunjukkan bahwa: 1) terdapat peningkatan kemampuan representasi matematis mahasiswa melalui penggunaaan bahan ajar kalkulus diferensial berbasis pendekatan open ended dengan kualitas peningkatan tergolong sedang, 2) terdapat perbedaan peningkatan kemampuan representasi matematis mahasiswa jika ditinjau dari tingkat kemampuan awal mahasiswa, dan 3) tidak terdapat perbedaan peningkatan kemampuan representasi matematis mahasiswa jika ditinjau dari gender.

Statistics

Downloads

Download data is not yet available.
Read Counter : 864
Downloads : 519
References
Dewanto, S. 2008. Meningkatkan Kemampuan Multipel Representasi Mahasiswa melalui Problembased Learning. Disertasi pada SPS UPI. Tidak Diterbitkan.
Cai, J., Lane, S., dan Jacabcsin, M.S. 1996. The Role of Open Ended Task and Holistic Scoring Rubrics: Assesing Students’ Mathematical Reasoning and Communication. Dalam Elliot, P.C. dan Kenney, M.J. (Eds.) Yearbook Communication in Mathematics K-12 and Beyond. Reston, VA: NCTM.
Fadillah, S. 2010. Meningkatkan Kemampuan Representasi Multipel Matematis. Pemecahan Masalah Matematis, dan Self Esteem Siswa SMP Melalui Pembelajaran dengan Pendekatan Open Ended. Disertasi. Bandung: PPs Universitas Pendidikan Indonesia.
Ferrini, M. J. dan Graham, K. G. 1991. An Overview of the Calculus Curriculum Reform Effort: Issues for Learning, Teaching, and Curriculum Development. The American Mathematical Monthly, 98(7), 627-635.
Goldin, G. A. 2002. Representation in Mathematical Learning and Problem Solving. Dalam English, L.D. (Ed.). Handbook of International Research in Mathematics Education. New Jersey: Lawrence Erlbaum Associates.
Hake, R. R. 1999. Analyzing Change/Gain Scores, AREA-D-American Educational Reseach Association’s Devision D, Measurement and Reseach Methodology. http://lists.asu.edu/cgibin/wa?A2=ind9903&L=aera-d&p=R6855. diakses tanggal 22 Oktober 2008.
Hudojo, H. 2002. Representasi Belajar Berbasis Masalah. Prosiding Konferensi Nasional Matematika XI, Edisi khusus.
Hwang, W.Y., Chen, N.S., Dung, J.J., dan Yang, Y.L. 2007. Multiple Representation Skills and Creativity Effects on Mathematical Problem Solving using a Multimedia Whiteboard System. Educational Technology & Society, X (2), 191-212.
Jones, B.F. dan Knuth, R.A. 1991. What Does Research Say About Mathematics? http://www.ncrl.org/sdrs/areas/stw_esys/2math.html. diakses tanggal 12 Februari 2008.
Luitel, B.C. 2001. Multiple Representations of Mathematical Learning. http://www.matedu.cinvestav.mx/adalira.pdf. diakses tanggal 18 Desember 2007.
National Council of Teachers of Mathematics. 2000. Principles and Standards for School Mathematics. Drive, Reston, VA: The NCTM.
Neria, D. dan Amit, M. 2004. Students Preference Of Non-Algebraic Representations In Mathematical Communication. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education. III, 409 – 416.
Nohda, N. 1999. A Study Of “Open-Approach” Method In School Mathematics Teaching - Focusing On Mathematical Problem Solving Activities. http://www.nku.edu/~sheffield/nohda.html. diakses tanggal 31 Maret 2008.
Ruseffendi, E.T. 2005. Dasar-dasar Penelitian Pendidikan dan Bidang Non Eksakta Lainnya. Bandung: PT Arsito.
Sawada, T. 1997. Developing Lesson Plans. Dalam Shimada, S. dan Becker, J.P. (Eds.). The Open Ended Approach. A New Proposal for Teaching Mathematics. Reston, VA: NCTM.
Silver, E. A. 1997. Fostering Creativity through Instruction Rich in Mathematical Problem Solving and Problem Posing. http://www.fizkarlsruhe.de/fiz/publications/zdm/2dm97343.pdf. Diakses tanggal 19 Mei 2008.
Shimada, S. 1997. The Significance of an Open Ended Approach. In Shimada, S. dan Becker, J.P. (Eds.). The Open Ended Approach. A New Proposal for Teaching Mathematics. Reston, VA: NCTM.
Takahashi, A. 2005. Characteristics of Japanese Mathematics Lessons. http://www.criced.tsukuba.ac.jp/math/sympo_2006/takahashi.pdf. diakses tanggal 31 Maret 2008.
Thiagarajan, S., Summel, D.S., dan Summel, M. 1974. Instructional Development for Training Teachers of Expectional Children: A Source Book. Bloomington: Center of Innovation on Teaching the Handicapped. Minneapolis: Indian University.
Tim Pustaka Yustisia. 2007. Panduan Lengkap KTSP (Kurikulum Tingkat Satuan Pendidikan) SD, SMP, dan SMA. Seri Perundangan. Cetakan Pertama. Yogyakarta: Pustaka Yustisia.
Yerushalmy, M. 1997. Designing Representations: Reasoning about Functions of Two Variables. Journal for Research in Mathematics Education, 27 (4), 431-466.