National Education Standards serves as the basis of education development strategy based on the result of evaluation the implementation of education. The evaluation is implemented through accreditation and national exam. The objective of this study is to analyze the score of computer-based national exam based on accreditation scores per items of instrument by applying multiclass random forest classification modeling. The research used Computer-Based National Exam data in 2018 and accreditation data from the year of 2017 and 2018. This study employed random forest for multiclass classification. The results showed that, based on the evaluation model, classification accuration value in multiclass random forest was 83.49%. In addition, this model produces important variables in classifying the average value of computer-based national examination, i.e., items laboratory conditions (x71, x68, x69, x67), electrical installation (x62), infrastructure (x64), canteen (x83), laboratory (x55), special service officers (x56), certified teachers (x39), library staff (x54), head of administration (x51), literacy activities for students (x33), use of textbooks (x14), and community/partner collaboration in education management (x96). Based on the indicators of important variables, National Education Standards that have important role are facility and infrastructure standards, educator and educational staff standards, and graduate competence standards. Therefore, improving the quality of education can be done by improving school facilities, the competency of teacher and education staff, and graduate competency.
AbstakÂ
Standar Nasional Pendidikan (SNP) berfungsi sebagai dasar strategi pengembangan pendidikan berdasarkan hasil evaluasi pelaksanaan pendidikan. Evaluasi pelaksanaan pendidikan dilaksanakan melalui akreditasi dan ujian nasional (UN). Tujuan penelitian ini untuk menganalisis nilai ujian nasional berbasis komputer (UNBK) berdasarkan skor akreditasi per butir instrumen dengan menerapkan pemodelan klasifikasi random forest multikelas. Penelitian ini menggunakan data UNBK tahun 2018 dan data hasil akreditasi tahun 2017 dan 2018. Metode penelitian yang digunakan adalah pemodelan klasifikasi random forest multikelas. Hasil penelitian menunjukkan bahwa, pertama, berdasarkan evaluasi model, nilai akurasi klasifikasi dalam pemodelan klasifikasi random forest multikelas sebesar 83.49%. Kedua, model ini menghasilkan tingkat kepentingan variabel prediktor (butir-butir instrumen akreditasi) dalam mengklasifikasikan nilai rataan UNBK yakni kondisi laboratorium (x71, x68, x69, x67), instalansi listrik (x62), prasarana (x64), kantin (x83), kondisi laboran (x55), petugas layanan khusus (x56), guru tersertifikat (x39), tenaga perpustakaan (x54), kepala administrasi (x51), kegiatan literasi S/M bagi peserta didik (x33), penggunaan buku teks (x14), dan kerja sama masyarakat/mitra dalam pengelolaan pendidikan (x96). Berdasarkan indikator variabel penting tersebut, SNP yang memiliki peran penting adalah Standar Sarana dan Prasarana, Standar Pendidik dan Tenaga Kependidikan, dan Standar Kompetensi Lulusan. Oleh karena itu, peningkatan mutu pendidikan dapat dilakukan dengan meningkatkan sarana dan prasarana, kompetensi pendidik dan tenaga kependidikan, serta kompetensi lulusan.Â